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Abstract—Probabilistic forecasting can characterize the uncer-
tainties and the dynamic trends of the future residential load,
while massive data are required for popular forecasting methods.
In this study, we consider probabilistic load forecasting for resi-
dential users who are only willing to provide limited data samples
due to privacy concerns. To address this challenge, we analyze the
characteristics of residential load and employ clustering-based
few-shot learning methods to augment the data. Meanwhile, we
combine different models, known as model ensemble, to further
improve the performance. Compared with conventional ensemble
methods using the linear combination, we adopt learning to
ensemble, which captures the strengths of various models by
learning the optimal nonlinear combination to avoid performance
loss. We demonstrate that the proposed method outperforms
conventional rivals theoretically and empirically. This method
also sheds light on how varying the number of provided data
can accommodate different privacy concerns.

Index Terms—Residential Load Forecasting, Few-Shot Learn-
ing, Learning to Ensemble

I. INTRODUCTION

Probabilistic residential load forecasting (PRLF) plays a
crucial role in the emerging active distribution grid, as it
provides comprehensive statistics of the future load to facilitate
decision-making [1]. For instance, home energy manage-
ment aims to control the flexible load according to forecast
information to minimize the total cost [2]. Over the past
several decades, various probabilistic forecasting methods
have demonstrated remarkable performance based on sufficient
data. However, privacy concerns may deter residential users
from providing the necessary data to service providers for
future load prediction. Consequently, there is a pressing need
to develop PRLF methods that are capable of delivering high
performance using few shot data samples or even in the
absence of data samples at all.

A. Challenges and Opportunities

The first challenge in few-shot PRLF arises from insufficient
data. Classical data augmentation methods, such as rotation
and cropping, cannot be incorporated into load data due to
their temporal dependency. To address this issue, various
time series data augmentation methods have been proposed,
including noise injection and window warping [3]. However,

C. Wu is the corresponding author. This work was supported by the National
Natural Science Foundation of China under Grant 72271213, and the Shen-
zhen Science and Technology Program under Grant JCYJ20220530143800001
and Grant RCYX20221008092927070.

these methods often overlook the specific characteristics of
the task at hand, resulting in inefficient data augmentation.
To overcome this shortcoming, we analyze the characteristics
of the residential load and propose a clustering-based few-
shot learning (FSL) method. This approach aims to identify
the target user’s load pattern and augment scarce data using
similar patterns.

The second challenge involves leveraging the potential of
augmented data effectively. While a number of models have
demonstrated remarkable performance in PRLF, our observa-
tion indicates that no single model consistently outperforms
others across all scenarios. Such an observation suggests
that a model ensemble is required to achieve consistently
improved forecasting performance. However, classical en-
semble methods, such as mean value and weighted average
ensemble, are essentially linear combinations, which may
limit the forecasting performance. To this end, we propose
a learning to ensemble approach designed for few-shot PRLF.
This approach captures the optimal nonlinear combination of
single models, resulting in improved performance over rivals.

Both theoretically and empirically, we demonstrate that our
proposed methods surpass its rivals. The whole process is
visualized in Figure 1.

B. Related Works

Few-shot load forecasting has been studied to address the
challenges brought by few shot data samples. Lee et al.
utilize transfer learning and meta learning to develop a high-
performance individualized forecasting model using limited
target user data, supplemented by extensive additional data
in [4]. Wu et al. introduce an attentive transfer framework to
ensemble the Graph Neural Network (GNN) models trained on
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the target user data and the GNN model trained on additional
data in [5]. Notably, these studies do not account for the
similarity between target user data and additional data, which
may compromise the performance. In [6], Lu et al. address this
issue by transferring the historical load data of other users in
the same area to supplement data samples. Different from this
heuristic method, Wang et al. design a clustering method that
leverages prior knowledge from clustering results to forecast
loads with limited data in [7]. We further this line of research
by employing a clustering-based few-shot learning approach.
In this paper, we offer theoretical insights into this method,
and demonstrates its remarkable performance with few shot
data samples.

There is also a growing body of literature on model ensem-
ble. Leandro et al. propose a modified Passive Aggressive Re-
gression model to implement the online ensemble forecasting
in [8]. Wang et al. introduce a constrained quantile regression
averaging method to integrate several individual probabilistic
forecasts in [9]. Nonlinear ensemble methods have also been
investigated recently. In [1], Lu et al. develop a learning
ensemble framework capable of capturing the optimal nonlin-
ear combination of different single models for probabilistic
load forecasting. However, these works mainly assume the
availability of sufficient data, a condition that is impractical
in our setting. Different from these studies, we highlight the
benefits of employing neural networks to construct nonlinear
probabilistic load forecasting model ensembles from both
theoretical and empirical perspectives.

II. PROBLEM FORMULATION

PRLF offers a significant improvement over traditional load
forecasting methods by predicting not only the expected values
but also the distribution of future loads [2]. Specifically,
probabilistic forecasting can be transformed into quantile
forecasting, guided by pinball loss as follows:

L(d̂, d, θ)=

{
(1− θ)(d̂− d) d̂ ≥ d,

θ(d− d̂) d̂ < d,
(1)

where d and d̂ denote the actual load and predicted load,
respectively. And θ is the pre-determined quantile. Given
a probabilistic load predictor at time T , its inputs are the
historical loads for the previous K in time slots, defined as
din
T = [dT−K in+1, ..., dT ]

T. Considering a target set of quan-
tiles Θ = {θ1, ..., θQ}, where Q is the number of target
quantiles, the PRLF F aims to forecast the loads D̂out

T of each
quantile in the upcoming Kout time slots. Mathematically:

D̂out
T = F(din

T ), (2)

where D̂out
T = [d̂out

T,θ1
, ..., d̂out

T,θQ
]. Each d̂out

T,θi
=

[d̂out
T+1,θi

, ..., d̂out
T+Kout,θi

], where d̂out
T+k,θi

denotes the predicted
load at time T + k with percentile θi.

The major challenge in PRLF is the requirement of large
volume data, which may raise users’ concerns about privacy

leakage. As we mentioned, this motivates us to study the few-
shot PRLF. To mathematically highlight the challenges in this
task, we introduce the following concepts.

Consider a dataset of input-output pairs (X ,Y). X is the
set of all inputs, i.e., X = {din

i ,∀i}. The set of the corre-
sponding output ground truth is Y = {dout

i ,∀i}. {din,dout}
forms an input-output pair. Few-shot PRLF aims to minimize
the expected risk (or generalization error) R for a specific
hypothesis h : X −→ Y 1, which is the loss measured with
respect to P (X ,Y) implying the ground truth joint probability
distribution of input X and output Y [10]. Specifically,

R(h) =

∫
L(h(X ),Y, θ) dP (X ,Y) = E[L(h(X ),Y, θ)].

(3)
Since P (X ,Y) is unknown, the empirical risk RI(h) serves

as a proxy for R(h)

RI(h) =
1

I

∑I

i=1
L(h(din

i ),d
out
i , θ), (4)

where I represents the sample size of few-shot training dataset
Dfs-train. Accordingly, we define

• ĥ = argmin
h

R(h) as the function that minimizes the
expected risk;

• hI = argmin
h∈H

RI(h) as the function in H that minimizes
the empirical risk.

Since ĥ is unknown, it must be approximated by some h ∈
H. hI represents the optimal hypothesis in H, obtained via
empirical risk minimization. While this method is generally
effective with sufficient data, it becomes unreliable in few-
shot PRLF. This is because, with limited data, the empirical
risk RI(h) may be far from being a good approximation of
the expected risk R(h) [10].

Mathematically, we seek to minimize the total error
E[R(hI)−R(ĥ)]. We observe this error is influenced by both I
(determined by the dataset) and H (determined by the model).
Hence, we propose to utilize clustering-based FSL to augment
the dataset. Then, we deploy learning to ensemble to determine
a hypothesis space H, which can further reduce the distance
between the hI and ĥ.

III. CLUSTERING-BASED FEW-SHOT LEARNING

In this section, we explain why clustering-based FSL ap-
proach is efficient in augmenting the training dataset for PRLF.

Classical data augmentation techniques mainly employ
transformations such as rotation and cropping, which cannot
be straightforwardly applied to datasets with strong temporal
dependencies [3]. Nonetheless, such temporal dependencies
can be a blessing. The principal characteristic of the residential
load is that the number of underlying daily energy consump-
tion patterns is limited [7]. In practice, we have an abundant
public residential load dataset [11], denoted by Dpublic, and
a limited set of load data to target users Dfs-train. Hence, we
propose to identify the consumption pattern of a target user

1h denotes a function mapping the input X and output Y within the
hypothesis space H.



in the small dataset Dfs-train with the help of public dataset
Dpublic by employing clustering techniques. Specifically, We
first cluster Dpublic to obtain the clustering model F cluster. And
each subgroup represents a unique load pattern comprising
similar load profiles. By averaging all historical data in the
same subgroup, we produce a prior knowledge dataset Dpk
for each cluster. Specifically, this paper utilizes the popular
clustering method k-means to acquire the proper subgroups.
By applying this approach, we derive the augmented dataset
Dpk as a source of prior knowledge:

S = F cluster(Dfs-train),

Dpk =
1

n

∑
i∈S

dpublic
i ,

(5)

where S represents the indices of households within the same
clusters as Dfs-train, and n denotes the size of S.

Remark 1: In practice, users can identify the load pattern
type without providing data to the service provider. This
is feasible because inference demands fewer computational
resources than training, allowing users to perform F cluster by
themselves. After identifying the load pattern type, the service
provider can offer a corresponding predictor for the target
users. Additionally, users can choose to provide few shot data
samples, such as a single day’s load, to the service provider
to further enhance performance.

IV. LEARNING TO ENSEMBLE

After augmenting the dataset, the remaining hurdle is to
improve the forecasting performance. We adopt model en-
semble, which refers to the process of generating multiple
single models that are subsequently combined to form a more
powerful model with enhanced performance. Specifically, four
popular deep learning models are prepared for learning to
ensemble, including Fully Connected Deep Neural Network
(FCDNN) [1], Recurrent Neural Networks (RNN) [12], Long
Short-term Memory (LSTM) [2], and Gated Recurrent Units
(GRU) [13].

We first specify the dataset. Consider the dataset Dpk
which may not contain the historical data of target user. This
dataset is equally divided into two parts. The initial portion
is employed to train various single forecasting models and
can be further subdivided into the training set Dt

pk and the
validation set Dv

pk, at a commonly accepted ratio of 4 : 1 in
the literature [14]. Similarly, the other segment of the dataset
is partitioned into two sets: the model ensemble dataset Ds

pk
and the ensemble validation dataset De

pk, adhering to the same
ratio. These are utilized to train and validate the ensemble
model, respectively.

For the whole process, multiple single forecasting models,
denoted by Fi, are first generated from the training set Dt

pk
and the validation set Dt

pk. Subsequently, an ensemble model
G is trained based on model ensemble set Ds

pk and forecasting
models Fi’s:

G(din) = Gens(Fi(d
in),∀i), (6)

where Gens is a mapping function from the predictions of
every single model Fi to the ensemble forecasting results.
The performance of ensemble model G is assessed using the
few-shot test set De

fs-test, in conjunction with the pinball loss
criterion.

Classical ensemble methods such as the mean value ensem-
ble, median value ensemble, and weighted average ensemble
linearly combine the outputs of single models. Nevertheless,
the assumption of linearity may be too strong. This observation
motivates us to explore nonlinear ensemble methods to approx-
imate the real prediction more accurately. Neural networks
are capable of overcoming the limitations of linear models
by learning the nonlinear relationship between the outputs
of single models and ensemble models. Specifically, a neural
network denoted by GML takes the forecasting results of all
N trained models F = {F1, ...,FN} as inputs and produces
the forecasting results D̂, as described by

D̂ = GML(Fi(d
in),∀i). (7)

The loss function LNN (GML) represents the total pinball
loss in the model ensemble training set Ds

pk:

LNN (GML) =
∑

(din,dout)∈S
L(dout,GML(Fi(d

in),∀i),Θ).

(8)
Then, the neural network is trained to minimize the pinball

loss LNN .

V. PERFORMANCE GUARANTEE

In this section, we demonstrate the theoretical performance
guarantee of the clustering-based FSL approach and learning
to ensemble approach.

A. Sample Size Analysis

We first analyze the effectiveness of clustering-based FSL
from a theoretical perspective. Let the sample size of few-
shot training set Dfs-train be zfs-train, and the size of similar
training set Dpk be zpk. Our method effectively enlarges the
training data by a factor of λ =

zpk

zfs-train
. The following theorem

demonstrates that our method can effectively enhance the
performance of FSL from the perspective of generalization
error bounds under two commonly adopted assumptions [15]:

Assumption 1: Consider a set of training samples {din
i ,d

out
i }.

We assume these samples are drawn i.i.d. from an unknown
distribution.

Assumption 2: We assume the activation function is a 1-
Lipschitz, positive-homogeneous activation function, which is
applied element-wise (such as the ReLU function).

Theorem 1: Given a specific model F and two hypotheses
hfs-train and hpk that trained with sample sizes zfs-train and zpk,
respectively, the generalization errors of the two hypotheses
satisfy:

R(hpk)

R(hfs-train)
=

√
zfs-train

zpk
=

1√
λ
. (9)

Proof: We prove Theorem 1 in two steps. We first
investigate the generalization error bound. Then, we analyze



the role of sample size in generalization error bound. The key
is to use Theorem 1 in [15], which suggests:

R(hfs-train) =
B(
√
2 log(2)d+ 1)

∏d
j=1 MF (j)

√
zfs-train

, (10)

R(hpk) =
B(
√
2 log(2)d+ 1)

∏d
j=1 MF (j)

√
zpk

, (11)

where B is a constant, d implies the depth of the neural
network, and MF (j) represents the upper bounds of Frobenius
norms in each layer.

Eqs. (10) and (11) immediately imply our results.
This theorem is significant, as it indicates that the general-

ization error bound decreases with increasing sample size at
the rate of

√
λ−1. The generalization error bound approach 0

if λ is very large. The final hurdle is to develop a powerful
model that can provide a proper hypothesis space H.

B. Hypothesis Space Analysis

An appropriate hypothesis space H indicates that we can
find a hypothesis h ∈ H, which can perfectly predict future
loads. Hence, we examine how substantially the pinball loss
can be reduced through our proposed approach.

Consider a targeted quantile θ and one basic forecasting
model F . We adopt the two-layer neural network for model
ensemble to predict the next K time steps load. Given inputs
din, the single model’s forecasting result is d̂out = F(din). An
optimal forecasting model F∗ can accurately predict the true
load dout,∗, i.e., dout,∗ = F∗(din). For the subsequent proofs,
we make the following assumption adopted in [1]:

Assumption 3: There exists a Lipschitz-continuous injective
mapping function h∗ from d̂out to dout,∗, i.e., dout,∗ = h∗(d̂out)
for all din.

The following theorem shows that the neural network can
efficiently approximate the optimal hypothesis h∗:

Theorem 2: Given a hypothesis space HNN corresponding to
a two-layer neural network with ReLU activation function and
Nhidden neurons in the hidden layer, these exists a hypothesis
hNN ∈ HNN satisfying:

∣∣∣hNN(d̂out)− h∗(d̂out)
∣∣∣ ≤ 2Qh∗(dmax − dmin)

Nhidden − 1
, ∀d̂out, (12)

where h∗ denotes the optimal hypothesis, Qh∗ is the Lipschitz
constant for injective mapping function h∗, dmax and dmin are
the upper and lower bounds of the loads.

Proof: We first construct the neural network parameters.
Denote the weighted vectot as W = [w1, w2, ..., wNhidden ]

⊤,
the bias vector as b = [b1, b2, ..., bNhidden ]

⊤. With the ReLU
activation function and input d, the output of the neuron
network hNN(d) satisfies:

hNN(d) = fReLU(Wd+ b) = max(Wd+ b, 0). (13)

It is clear that hNN(d) is piecewise linear. Now we seek
to design the parameters W and b such that, for all integer
k ∈ [0, Nhidden − 1]:

hNN
(
dmin +

k(dmax − dmin)

Nhidden − 1

)
= h∗

(
dmin +

k(dmax − dmin)

Nhidden − 1

)
.

(14)

This condition ensures the neural network can approximate
the optimal mapping function h∗ in a point-wise manner. Now
we will show that the weighted parameter design can meet the
requirement of Eq. (14):

wi=

Gi
h∗ , i = 1,

Gi
h∗ −

∑i−1

k=1
wk, i > 1,

(15)

where Gi
h∗ is a constant satisfying:

Gi
h∗ =

Nhidden − 1

(dmax − dmin)

(
h∗
(
dmin +

i(dmax − dmin)

Nhidden − 1

)

− h∗
(
dmin +

(i− 1)(dmax − dmin)

Nhidden − 1

))
.

(16)

Additionally, the bias parameter follows:

bi = −wi

(
dmin +

(i− 1)(dmax − dmin)

Nhidden − 1

)
,∀i. (17)

Substituting Eq. (15) and (17) into Eq. (13), we can verify
the condition in Eq. (14).

To prove the property of hNN, we follow the same routine
of Theorem 4 in [1], which suggests:

∣∣hNN(d)− h∗(d)
∣∣ ≤ 2Qh∗(dmax − dmin)

Nhidden − 1
. (18)

where Qh∗ is the is the Lipschitz constant for h∗. This
concludes our proof.

This is an important theorem that indicates that the ensemble
error decreases at the rate of O( 1

Nhidden
). With the increase in

the number of neurons Nhidden, the neural network can approx-
imate h∗ better. When Nhidden becomes larger, the ensemble
error will approach 0. This theorem indicates that learning to
ensemble is capable of providing a hypothesis space H, which
includes the optimal hypothesis h∗. Furthermore, this theorem
can be easily extended to more complex scenarios following
the similar routine of Theorem 19 in [16].

VI. NUMERICAL STUDIES

In this section, we evaluate the performance of our proposed
few-shot ensemble learning framework. All experiments are
conducted on a server equipped with an Intel ® i7-9700 CPU,
32 GB RAM, and an NVIDIA ® GeForce RTX™ 3090Ti.



A. Experimental Setup

We extract residential load data for 114 apartments from the
UMass Smart Dataset (2017 release) [11] from April 2016 to
October 2016, with a resolution of 30 minutes. Specifically,
we select 100 apartments as the public dataset to provide
cluster results, utilizing the remaining apartments to evaluate
the efficacy of our proposed method. The input data are
normalized using a common approach. The forecasting outputs
consist of PRLF results with percentiles of 20%, 50%, and
80%. The task is to predict load in future intervals of 0.5, 1,
2, and 4 hours. The dataset is split in a 4:1:4:1 ratio, which is
used for the training of single models, the validation of single
models, the training of the ensemble model, and the validation
of the ensemble model, respectively. Specifically, the sample
size of the few-shot dataset Dfs-train includes a load duration
of 2 days.

We generate ten RNN, LSTM, and GRU models with 1 or 2
recurrent layers, and the number of features in the hidden state
is 16, 32, 64, 128, 256, respectively. For FCDNN, the neuron
count in the first layer is either 16 or 32 or 64, and the second
layer has 16 or 32 or 64 or 128 neurons. The FCDNN model
used in learning to ensemble has 64 neurons in both layers.

For hyperparameters in each model, we employ random
search to determine optimal parameters, including the learning
rate and the number of neurons. During the model training
process, we utilize the Adam optimizer for optimization and
the UP criterion for early stopping, with ReLU functioning
as the generic activation function. We adhere to the methods
mentioned in classical references for tuning the remaining
essential parameters.

B. Competing Methods

We introduce three competing methods:
• Conventional Method (CM): We trained a set of 40 single

models, as mentioned in Section IV, using the few-shot
dataset Dfs-train. Then, we selected the best-performing
models as the benchmark.

• Few-shot Learning Method (FSL): Similar to CM, we
trained 40 single models using the augmented dataset
Dpk. Then, we again selected the best models as the
benchmark.

• Ensemble Few-shot Learning Method (EFSL): In this
approach, we leveraged learning to ensemble to enhance
FSL. Furthermore, we design different strategies with
varying numbers of shots used for fine-tuning: 0 shot
(EFSL-Z), 1 shot (EFSL-O), half of the few-shot dataset
size zfs-train

2 shots (EFSL-H), and zfs-train shots (EFSL).

C. Performance Evaluation

Table I illustrates the pinball loss for different forecasting
methods over varying forecasting windows. CM achieves the
highest pinball loss across all time intervals. Because training
CM with few shots often leads to overfitting, FSL can surpass
CM since the risk of overfitting is mitigated by a larger
sample size. EFSL consistently outperforms its rivals across
all time windows, with the lowest pinball loss. Furthermore,

TABLE I
PERFORMANCE ON UMASS SMART DATASET.

CM FSL EFSL-Z EFSL-O EFSL-H EFSL
30 min 0.4206 0.3036 0.2907 0.2819 0.2770 0.2765

1 h 0.3745 0.3034 0.2859 0.2794 0.2781 0.2761
2 h 0.353 0.3058 0.2928 0.2866 0.2810 0.2788
4 h 0.34 0.3063 0.2924 0.2869 0.2824 0.2810
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Fig. 2. Performance Evaluation.

the performance of EFSL improves as the number of samples
used for fine-tuning increases.

Figure 2(a) illustrates the relative enhancement in the loss of
each EFSL model in comparison to the best CM. Notably, even
the zero-shot EFSL can improve the benchmark by more than
30% and 10% when the forecasting window is set to 30 min
and 4 h, respectively. Moreover, EFSL exhibits substantially
superior performance, as the actual load data enable better
customization of the specific load pattern through fine-tuning.
Specifically, the maximum improvement can exceed 30%.
When compared with the best FSL, Figure 2(b) reveals that the
EFSL also outperforms the best FSL across all output windows
and numbers of shots, with the zero-shot EFSL enhancing
the best FSL by over 4% and EFSL enhancing the best FSL
by over 8%. Interestingly, this enhancement is nearly 50%
when only 1-shot is employed for fine-tuning, and it tends to
decrease with the growing number of shots.

D. User-Dependent Performance Analysis

To provide a comprehensive performance comparison of
different methods for various residential consumers, Figure
3 characterizes the pinball loss for different methods across
different apartments. The x-axis symbolizes the pinball loss
for a specific method, while the y-axis represents the pin-
ball loss of EFSL for that apartment. Scatters beneath the
line indicate inferior performance compared to EFSL. Most
scatters fall below this line, thereby highlighting that our
EFSL outperforms other methods across most apartments and
forecasting windows. Some zero-shot EFSL points near the
line, denoting remarkable performance even in the absence of
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specific training data. Conversely, most FSL points are situated
further from the line, illustrating that the ensemble method
significantly bolsters the FSL for most apartments.

E. Temporal Performance Analysis

Figure 4 visualizes the time series of the loss in different
percentiles when the forecasting window is 1 hour for some
apartments. We can observe the prior knowledge dataset Dpk
may not precisely represent the accurate load pattern for a
particular apartment, resulting in a substantial loss when the
pattern in Dpk differs from the actual one. For example, the
pinball loss in apartment 8 can be large at about 24 : 00.

The reason may be that the lifestyle for apartment 8 is much
different from the others in its subgroup. Additionally, the
pinball loss tends to be higher and more dispersed around
7 : 00 and 18 : 00, corresponding to the times when people
typically wake up and return from work. Consumers have
greater load demands and uncertainties during these periods,
making the loads more challenging to forecast.

VII. CONCLUSION

This study employs a clustering-based few-shot learning
method and learning to ensemble to enhance the performance
of few-shot PRLF. We theoretically and empirically demon-
strate the superiority of our proposed approach. Based on
our methods, we have designed an appropriate forecasting
strategy tailored to various levels of privacy concerns, thereby
achieving remarkable performance.
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